Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining

نویسندگان

  • K. Manimala
  • K. Selvi
  • R. Ahila
چکیده

Recognition of the presence of any power disturbance and classifying any existing disturbance into a particular type is the first step in combating the power quality problem. In spite of the extensive number of power disturbances classification methods, a research on the selection of useful features from the existing feature set and the parameter optimization for specific classifiers was omitted. The kernel parameters setting for support vector machine (SVM) classifier in training process along with feature selection will significantly impact the classification accuracy. Two novel wrapper based hybrid soft computing techniques are proposed in this paper for feature selection and parameters optimization to classify nine types of power disturbances without degrading the SVM classification accuracy. The feature items were imulated annealing enetic algorithm ower quality avelet transform selected from discrete wavelet transform across several decomposition levels of the disturbance signals and from the duration of disturbance occurrence. This analysis selects the more useful feature set and optimized parameters for two types of kernels namely the polynomial kernel and radial basis function kernel for SVM. Compared with the traditional grid algorithm the proposed genetic algorithm and simulated annealing based approach significantly improves the classification accuracy rate by eliminating relatively useless feature items and proper parameter selection for the classifier. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters

The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...

متن کامل

Utilization of Soft Computing for Evaluating the Performance of Stone Sawing Machines, Iranian Quarries

The escalating construction industry has led to a drastic increase in the dimension stone demand in the construction, mining and industry sectors. Assessment and investigation of mining projects and stone processing plants such as sawing machines is necessary to manage and respond to the sawing performance; hence, the soft computing techniques were considered as a challenging task due to stocha...

متن کامل

Application of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values

Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial  neu...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

Feature Selection and Parameter Optimization of a Fuzzy-based Stock Selection Model Using Genetic Algorithms

In the areas of investment research and applications, feasible quantitative models include methodologies stemming from soft computing for prediction of financial time series, multi-objective optimization of investment return and risk reduction, as well as selection of investment instruments for portfolio management, etc. Among all these, stock selection has long been identified as a challenging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011